71 research outputs found

    Atomistic modelling of all dislocations and twins in HCP and BCC Ti

    Full text link
    Ti exhibits complex plastic deformation controlled by active dislocation and twinning systems. Understandings on dislocation cores and twin interfaces are currently not complete or quantitative, despite extensive experimental and simulation studies. Here, we determine all the core and twin interface properties in both HCP and BCC Ti using a Deep Potential (DP) and DFT. We determine the core structures, critical resolved shear stresses and mobilities of , , dislocations in HCP and /2 dislocations in BCC Ti. The slip consists of slow core migration on pyramidal-I planes and fast migration on prism-planes, and is kinetically limited by cross-slips among them. This behaviour is consistent with "locking-unlocking" phenomena in TEM and is likely an intrinsic property. Large-scale DFT calculations provide a peek at the screw core and glide behaviour, which is further quantified using DP-Ti. The screw is unstable on pyramidal-II planes. The mixed is nearly sessile on pyramidal-I planes, consistent with observations of long dislocations in this orientation. The edge and mixed are unstable against a pyramidal-to-basal (PB) transition and become sessile at high temperatures, corroborate the difficulties in -axis compression of Ti. Finally, in BCC Ti, the /2 screw has a degenerate core with average glide on {112} planes; the /2 edge and mixed dislocations have non-dissociated cores on {110} planes. This work paints a self-consistent, complete picture on all dislocations in Ti, rationalises previous experimental observations and points to future HRTEM examinations of unusual dislocations such as the mixed and PB transformed cores

    mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with Modality Collaboration

    Full text link
    Multi-modal Large Language Models (MLLMs) have demonstrated impressive instruction abilities across various open-ended tasks. However, previous methods primarily focus on enhancing multi-modal capabilities. In this work, we introduce a versatile multi-modal large language model, mPLUG-Owl2, which effectively leverages modality collaboration to improve performance in both text and multi-modal tasks. mPLUG-Owl2 utilizes a modularized network design, with the language decoder acting as a universal interface for managing different modalities. Specifically, mPLUG-Owl2 incorporates shared functional modules to facilitate modality collaboration and introduces a modality-adaptive module that preserves modality-specific features. Extensive experiments reveal that mPLUG-Owl2 is capable of generalizing both text tasks and multi-modal tasks and achieving state-of-the-art performances with a single generic model. Notably, mPLUG-Owl2 is the first MLLM model that demonstrates the modality collaboration phenomenon in both pure-text and multi-modal scenarios, setting a pioneering path in the development of future multi-modal foundation models

    Marvel analysis of the measured high-resolution rovibrational spectra of H2S

    Get PDF
    44325 measured and assigned transitions of H232_2^{32}S, the parent isotopologue of the hydrogen sulfide molecule, are collated from 33 publications into a single database and reviewed critically. Based on this information, rotation-vibration energy levels are determined for the ground electronic state using the Measured Active Rotational-Vibrational Energy Levels (MARVEL) technique. The ortho and para principal components of the measured spectroscopic network of H232_2^{32}S are considered separately. The verified set of 25293 ortho- and 18778 para- H232_2^{32}S transitions determine 3969 ortho and 3467 para energy levels. The Marvel results are compared with alternative data compilations, including a theoretical variational linelist.Comment: 39 pages, 3 figures, JQSRT, 201

    The efficacy and safety analysis of first-line immune checkpoint inhibitors in pulmonary sarcomatoid carcinoma

    Get PDF
    BackgroundPulmonary sarcomatoid carcinoma (PSC) is a rare and aggressive disease without standardized treatment strategies. The efficacy of second-line or beyond immune checkpoint inhibitors (ICIs) has been proven in recent studies, whereas the evidence for first-line immunotherapy for PSC is still limited to case reports and remains poorly understood.Materials and methodsThis was a multicenter, retrospective analysis of 21 patients with a histological diagnosis of PSC who received ICI as first-line therapy from January 2019 to March 2022. The expression of PD-L1 was evaluated by immunohistochemistry (IHC) using the monoclonal antibody 22C3. Low and high PD-L1 expressions were defined using the tumor proportion score (TPS), with cutoffs of 1 and 50%, respectively.ResultsAll eight patients had PD-L1 positivity who underwent PD-L1 expression assessment, and six patients (6/8, 75.0%) had high PD-L1 expression. Among the 21 PSC patients, seven received tislelizumab, six received camrelizumab, four received sintilimab, three received pembrolizumab, and one received durvalumab. Among them, 18 PSCs received combination therapy, whereas another three PSCs received immunotherapy alone. Out of the 21 PSC patients, 12 (57.1%) achieved a partial response (PR), and five patients had stable disease (SD) as the best response, whereas four PSCs experienced dramatic progressive disease (PD). The median progression-free survival (PFS) was 9.2 (95% CI [4.3, 14.1]) months, and the median OS was 22.8 (95% CI [4.0, 41.5]) months. Among the three treatment groups (immunotherapy alone, immunotherapy combined with anlotinib, and chemoimmunotherapy), the median PFS was 8.0, 9.4, and 9.6 months, and the median OS was 19.0, 22.8, and 30.6 months, respectively. There was no difference in PFS and OS between the three treatment regimen groups (P = 0.86 and P = 0.34, respectively) and different immunotherapies (P = 0.10 and P = 0.23, respectively). No serious adverse events (grade ≥ 3) were noted.ConclusionFirst-line immunotherapy has promising therapeutic potential in the treatment of PSC. More studies are warranted to confirm these findings

    A cross-curricular physical activity intervention to combat cardiovascular disease risk factors in 11-14 year olds: 'Activity Knowledge Circuit'

    Get PDF
    Background: Cardiovascular disease is the leading cause of mortality worldwide. Risk factors associated with cardiovascular disease have been shown to track from childhood through to adulthood. Previous school-based physical activity interventions have demonstrated modest improvements to cardiovascular disease risk factors by implementing extra-curricular activities or improving current physical education curriculum. Few have attempted to increase physical activity in class-room taught curriculum subjects. This study will outline a school-based cross-curricular physical activity intervention to combat cardiovascular disease risk factors in 11-14 year old children. Method/Design: A South Wales Valley school of low socio-economic status has been selected to take part. Participants from year eight (12-13 years) are to be assigned to an intervention group, with maturation-matched participants from years seven (11-12 years) and nine (13-14 years) assigned to a control group. A cross-curricular physical activity intervention will be implemented to increase activity by two hours a week for 18 weeks. Participants will briskly walk 3200 m twice weekly during curriculum lessons (60 minutes duration). With the exception of physical education, all curriculum subjects will participate, with each subject delivering four intervention lessons. The intervention will be performed outdoors and on school premises. An indoor course of equal distance will be used during adverse weather conditions. Cardiovascular disease risk factors will be measured pre- and post-intervention for intervention and control groups. These will take place during physical education lessons and will include measures of stature, mass, waist, hip, and neck circumferences, together with skinfold measure's taken at four sites. Blood pressure will be measured, and fitness status assessed via the 20 m multi-stage fitness test. Questionnaires will be used to determine activity behaviour (physical activity questionnaire for adolescence), diet (seven day food diary) and maturation status. Fasting blood variables will include total cholesterol, lowdensity lipoprotein cholesterol, high density lipoprotein cholesterol, triglycerides, insulin, glucose, high-sensitivity C-reactive protein, interleukin-6, adiponectin, and fibrinogen. Motivational variables and psychological well-being will be assessed by questionnaire. Discussion: Our study may prove to be a cost effective strategy to increase school time physical activity to combat cardiovascular disease risk factors in children.</p

    Recent Progress of Diffusion Weighted Magnetic Resonance Imaging in Assessment of Tumor in the Body

    No full text
    In the last couple of years, as the development of new imaging techniques, diffusion-weighted magnetic resonance imaging (DW-MRI) has been applied increasingly in the evaluation of various diseases in the body, and has been adopted frequently as an imaging tool in clinical tumor assessment. As a completely non-invasive, highly sensitive, well-tolerated and relatively low cost technique, diffusion-weighted imaging (DWI) can supply both quantitative and qualitative information at the cellular level by exploring irregular diffusion motion of water molecules within tissues in the body. In this article, we summarized the recent application and reliability of DWI in tumor evaluation including tumor detection, tumor features, and outcome of early treatment response
    • …
    corecore